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Abstract: B-Acetoxy-u-diazo esters yield o-enol acetate esters quantitatively by reaction with divhodium tetraacetate.
The reaction was used to prepare the major natural compounds 3-Deoxy-D-arabino-2-Heptulosonic acid (DAH, 1)
and 3-Deoxy-D-manno-2-Octulosonic acid (KDO, 2) by conversion of the enol acetate function to the corresponding
ketone.

B-Hydroxy-a-diazo carbonyl derivatives, readily available by aldol-like condensation of aldehydes or ketones
with diazocarbonyl compounds in basic' or neutral media?, allow attractive functionalization. Nevertheless, the
primary synthetic application of these compounds is their conversion into the corresponding B-keto carbonyl
compounds by photolysis? or rhodium catalysed decomposition*. Following previous studies on the chemistry of f-
oxy-o--diazo carbonylcompounds® aimed at exploring the synthetic potential of these interesting derivatives, in this
work we used the well-known Rhodium II- mediated rearrangement of B-acetoxy-o-diazo esters® to synthesize
the significant natural products 3-deoxy-D-manno-2-octulosonic acid (KDO) 2, an essential component of the outer
lipopolysaccharide membrane of all Gram-negative bacteria’, and 3-deoxy-D-arabino-2-heptulosonic acid (DAH)*
1, the firstintermediate in the biosynthesis of aromatic aminoacids by the shikimate pathway in plants and bacteria.
The synthesis of these products, particularly that of KDO, 2, has aroused much interest in the last few decades® as
a means for developing a new class of antibiotics against Gram-negative bacteria.

A plausible mechanism for the Rhodium II-catalysed decomposition of B-acyloxy-a-diazo carbonyl com-
pounds, proposed by Ikota etal. formethyl 3-phenyl-3-benzoyloxy-2-diazo propionate®, starts with the attack of the
carbonyl group to the electrophilic metal-stabilized carbenoid to form a S-member cyclic intermediate thatis finally
converted into enol carboxylate by carboxylate migration ( Scheme 1). We extended this reaction to different
carboxyl derivatives (acetates, carbonates and carbamates) and obtained a quantitative yield of the carboxyl
rearranged compound in all cases.
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This reaction was applied to the synthesis of the 3-deoxy-2-keto aldonic acids KDO and DAH. Firstly,
reaction of 2,3:4,5-di-O-isopropylidene-D-arabino aldehyde 3'° with ethyl diazoacetate in the absence of solvent
and catalyst provided the 3:2 diastereoisomer mixture of the corresponding B-hydroxy-a-diazo esters 4a:4b in
a 80%yield. The two diastereoisomers were separated by flash chromatography, which allowed structural
assignment of the NMR spectra and elucidation of the absolute configuration at C-3 for each diastereoisomer'’.
Acetylation of the diastereoisomers (4a:4b) gave the acetyl derivatives (5a:5b). Rhodium-catalysed decompo-
sition of Sa gave the Z enol acetate 6 quantitatively and stereospecifically. The other diastereoisomer, 5b, gave
the corresponding E-6 isomer. Acid hydrolysis of either Z-6 or E-6 with TFA led to DAH in a quantitative yield;
the product was identified as its barium salt'> (Scheme 2).
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For synthesizing KDO 2, 2,3:5,6-di-O-isopropylidenc-4-rers-Butyldimethylsilyl-D-manno aldehyde 7"
was condensed with ethyl diazoacetate as described above to obtain the 3.5:1 diastereocisomer mixture of B-
hydroxy-o-diazo esters 8a:8b in a 74% yield. Acetylation and rhodium decomposition afforded the Z:E enol
acetates 9 in a quantitative yield. Conversion of the enol acetate to the corresponding ketone was accomplished
by acid hydrolysis with TFA (as with 6); however, a complex mixture was obtained from which KDO could not
be detected by comparison with an authentic KDO sample*4. This was ascribed to the well-known instability of
KDO in acid media?®. Also, conversion of the enol acetate to ketone by basic treatment (MeOH/KCOH 0.1N) was
similarty unsuccessful, probably due to the lack of stability of the ketone under the basic reaction conditions.
Inclusion of an additional step allowed KDO to be prepared. Thus, treatment of 9 with 1M hydrazine in methanol
gave the hydrazone 10'¢ (88% after purification), which was stable under the basic conditions used. This stability
can be ascribed to the less marked acid character of the o-hydrogens to the hydrazone group relative to the ketone
group, which avoids the side undesirable reactions observed in treating 9 with MeOH-KOH . Hydrolysis of ter¢-
Butyldimethylsilane with TBAF in THF provided the corresponding 4-O-unprotected hydrazone in a quantitative
yield . Cleavage of the hydrazone group by ozonolysis" gave a complex mixture of products including 50% of
the pyranose 12. Alternatively, the hydrazone was quantitatively oxidized to the 2-diazo ester 11 by activated
manganese dioxide. This diazo compound was treated with m-CPBA in chloroform to give a high yield (92% from
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10) of the anomenc mixture of the pyranose 12 . Similarly, the deprotection-oxidation reaction sequence (from
10 to 11) could be reversed with no yield loss. Finally, cleavage of acetals 12 (AcOH 90%, 90 °C, 15 min.) and
treatment with 30% ammonia of the resulting ester provided the ammonium salt of KDO** in quantitative yield
(Scheme 3).
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In conclusion, the proposed synthetic method allows expeditious, ready synthesis of KDO and DAH . The
yields of both 3-deoxy-2-keto aldonic acids are quite high and the reactions involved proceed under very mild
conditions. Moreover, the condensation products 3-hydroxy-2-diazo esters 4, 8 and the 3-deoxy-2-diazo ester
11 are valuable compounds for the synthesis of KDO or DAH analogues.
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