

Pergamon

00404039(94)01358-6

p-Oxy-a-Diazo Carbonyl Compounds. III. Rh₂(AcO)₄ Mediated Decomposition of β-Acetoxy-α-Diaz Esters. Application to the Synthesis of Natural 3-Deoxy-2-keto Aldonic Acids (KDO and DAH).

Fidel J. López-Herrera^{*} and Francisco Sarabia-García

Departamento de Bioquímica, Biología Molecular y Química Orgánica. Facultad de Ciencias Universidad de Málaga. 29071 Málaga. Spain.

Abstract: β -Acetoxy- α -diazo esters yield α -enol acetate esters quantitatively by reaction with dirhodium tetraacetate. The reaction was used to prepare the major natural compounds 3-Deoxy-D-arabino-2-Heptulosonic acid (DAH, 1) and 3-Deoxy-D-manno-2-Octulosonic acid (KDO. 2) by conversion of the enol acetate function to the corresponding **ketone.**

 $β$ -Hydroxy-α-diazo carbonyl derivatives, readily available by aldol-like condensation of aldehydes or ketones **with diaxocarbonyl compounds in basic' or neutral media', allow attractive functionalixation. Nevertheless, the** primary synthetic application of these compounds is their conversion into the corresponding β -keto carbonyl compounds by photolysis³ or rhodium catalysed decomposition⁴. Following previous studies on the chemistry of β**oxy-α-diazo carbonyl compounds⁵ aimed at exploring the synthetic potential of these interesting derivatives, in this** work we used the well-known Rhodium II- mediated rearrangement of β-acetoxy-α-diazo esters⁶ to synthesize the significant natural products 3-deoxy-D-manno-2-octulosonic acid (KDO) 2, an essential component of the outer lipopolysaccharide membrane of all Gram-negative bacteria⁷, and 3-deoxy-D-arabino-2-heptulosonic acid (DAH)⁸ **1, the first intermediate in the biosynthesis of aromatic aminoacids by the shikimate pathway** in plants **and bacteria.** The synthesis of these products, particularly that of KDO, 2, has aroused much interest in the last few decades⁹ as **a means for developing a new class of antibiotics against Gram-negative bacteria**

A plausible mechanism for the Rhodium II-catalysed decomposition of β -acyloxy- α -diazo carbonyl com**pounds, proposed by lkotaet al. for methyl 3-phenyl-3-benxoyloxy-2-diaxo propiona&F, starts with the attackof the carbonyl group to the electrophiic metal-stabilized carbenoid to form a S-membercydic intermediate that is fimally converted into enol carboxylate by carboxylate migration (Scheme 1). We extended this reaction to different carboxyl derivatives (acetates, carbonates and carbamates) and obtained a quantitative yield of the carboxyl rearranged compound in all cases.**

This reaction was applied to the synthesis of the 3-deoxy-2-keto sldonic acids KDO and DAH. Firstly, reaction of 2,3:4,5-di-O-isoptopylidene-D_arabino aldehyde 31° with ethyl diaxoacetate in the absence of solvent and catalyst provided the 3:2 diastereoisomer mixture of the corresponding β-hydroxy-α-diazo esters **4a:4b** in **a 8096yield. The two diastereoisomers were separated by flash chromatography, which allowed structural** assignment of the NMR spectra and elucidation of the absolute configuration at $C-3$ for each diastereoisomer¹¹. Acetylation of the diastereoisomers (4a:4b) gave the acetyl derivatives (5a:5b). Rhodium-catalysed decompo**sition of So gave the** Z **enol acetate 6 quantitatively and stereospecifically. The other diastereoisomer,** Sb, **gave** the corresponding E-6 isomer. Acid hydrolysis of either Z-6 or E-6 with TFA led to DAH in a quantitative yield; the product was identified as its barium salt¹² (Scheme 2).

For synthesizing KDO 2, 2,3:5,6-di-O-isopropylidene-4-tert-Butyldimethylsilyl-D-manno aldehyde 7¹³ **was condensed with ethyl diaxoacetatc as described above to obtain the 3.5:l diastereoisomer mixture of 8** hydroxy-a-diazo esters 8a:8b in a 74% yield. Acetylation and rhodium decomposition afforded the Z:E enol acetates 9 in a quantitative yield. Conversion of the enol acetate to the corresponding ketone was accomplished **by acid hydrolysis with TFA (as with 6); however, a complex mixture was obtained from which KDO could** not be detected by comparison with an authentic KDO sample¹⁴. This was ascribed to the well-known instability of **KDCJ in acid medials. Also. conversion of the enol acetate to ketone by basic treatment (MeOH/KOH 0. 1N) was similarly unsuccessful, probably due to the lack of stability of the ketone under the basic reaction conditions.** Inclusion of an additional step allowed KDO to be prepared. Thus, treatment of 9 with 1M hydrazine in methanol gave the hydrazone 10¹⁶ (88% after purification), which was stable under the basic conditions used. This stability **can be ascribed to the less marked acid character of the a-hydrogens to the hydrazone group relative to the ketone group, which avoids the side undesirable reactions observed in treating 9 with MeOH-KOH** . **Hydrolysis of tert-**Butyldimethylsilane with TBAF in THF provided the corresponding 4-O-unprotected hydrazone in a quantitative **yield** . **Cleavage of the hydrazone group by ozonolysis" gave a complex mixture of products including 50% of the pyranose 12. Alternatively, the hydraxone was quantitatively oxidized to the 2-diaxo ester II by activated manganese dioxide. This diaxo compound was treated with m-CPBA in chloroform to give a high yield (92% from**

10) of the anomeric mixture of the pyranose 12. Similarly, the deprotection-oxidation reaction sequence (from 10 to 11) could be reversed with no yield loss. Finally, cleavage of acetals 12 (AcOH 90%, 90 °C, 15 min.) and treatment with 30% ammonia of the resulting ester provided the ammonium salt of $KDO¹⁸$ in quantitative yield (Scheme 3).

In conclusion, the proposed synthetic method allows expeditious, ready synthesis of KDO and DAH. The yields of both 3-deoxy-2-keto aldonic acids are quite high and the reactions involved proceed under very mild conditions. Moreover, the condensation products 3-hydroxy-2-diazo esters 4, 8 and the 3-deoxy-2-diazo ester 11 are valuable compounds for the synthesis of KDO or DAH analogues.

ACKNOWLEDGEMENT

This project was financed by the "Dirección General de Investigación y Científica Técnica" (ref. PB90-0811) and by the "Dirección General de Universidades e Investigación. Consejería de Educación y Ciencia. Junta de Andalucia, (grupo 3110)". F. Sarabia-García received a research gram from the Consejería de Educación y Ciencia de la Junta de Andalucía.

REFERENCES AND NOTES

- * Wenkert, E. and McPherson, C. A. J. Am. Chem. Soc., 1972, 94, 8084-8090; * Wenkert, E.; Ceccherelli, P. and Fugiel,R. $\mathbf{1}$. A. J. Org. Chem; 1978, 43, 3982; ^e Schöllkopf, U.; Bánhidai, B.; Frasnelli, H.; Meyer, R. and Beckhaus, H. Justus Liebigs Ann. Chem., 1974, 1767-1783; ⁴ Woolsey, N. F. and Khalil, M. H. J. Org. Chem., 1972, 37, 2405; °R. Pellicciari, B. Natalini, S. Ceccheti and R. Fringuelli, J. Chem. Soc. Perkin Trans 1; 1985, 493-496.
- López-Herrera, F. J.; Valpuesta-Fernández, M. and García-Claros, S. Tetrahedron, 1990, 46, 7165-7174. $2¹$
- $3.$ Horton, D. and Philips, K. D. Carbohyd. Res., 1972, 22, 151-162.
- $\overline{4}$. * Ye, T. and McKervey, M. A. Tetrahedron, 1992, 48, 8007-8022; b Pellicciari,R.; Sisani, E. and Pringuelli, R. Tetrahedron

Lett., 1980, 21, 4039-4042; "Pellicciari, R.; Castagnino, E.; Fringuelli, R. and Corsano, S. Tetrahedron Lett., 1979, 20, 481-484.

- López-Herrera, F. J. and Sarabia-García, F. Tetrahedron Lett., 1993, 34, 3467-3470. 5.
- 6. Ikota, N.; Takamura, N.; Young, S.D. and Ganem, B. Tetrahedron Lett., 1981, 22, 4163-4166.
- 7. Unger, F. M. Adv. Carbohydr. Chem. Biochem., 1981, 38, 323-388.
- 8. "Charon, D. and Szabo, L. Methods in Enzymol., 1975, 41, 94; b Nigan, V. N. Can. J. Biochem., 1964, 42, 1561.
- \mathbf{Q}_{\perp} * Ramage, R.; MacLeod, A. M.; and Rose, G. W. Tetrahedron; 1991, 47, 5625; $\frac{1}{2}$ Imoto, M.; Kusumoto, S. and Shiba, T. Tetrahedron Lett., 1987, 28, 6235; 6 Danishefsky, S. J.; Pearson, W. H. and Segmuller, B. E. J. Am. Chem. Soc., 1985, 107, 1280; ^d Branchaud, B. P. and Meier, M. S. J. Org. Chem; 1989, 54, 1320; ^e Dondoni, A. and Merino, P. J. Org. Chem., 1991, 56, 5294; ^f van der Klein, P. A. M.; Boons, G. J. P. H.; Veeneman, G. H.; van der Marel, G. A. and van Boom,J. H. Tetrahedron Lett., 1989, 30, 5477; ⁸ Esswein, A.; Betz, R. and Schmidt, R.; Helv. Chim. Acta; 1989, 72, 213; ⁸ Giese, B. and Linker, T. Synthesis, 1992, 46; 1 Martin, S. F. and Zinke, P. W. J. Org. Chem.; 1991, 56, 6600.
- 10. Zinner, H.; Brandner, H. and Rembarz, G. Chem. Ber..; 1956, 56, 800.
- 11. Epimer 4a: $[\alpha]_D^{\infty}$ +3.6° (CHCl₃); ¹H-NMR (CDCl₃) δ ppm: 4.72 (dd, 1H, J₃₄ = 4.5 Hz and J_{30H} = 6.1 Hz, H-3); 4.20 (q, 2H, J= 7.0 Hz, -OCH₂-); 4.13-4.02 (m, 2H, H-4, H-6); 4.00 (dd, 1H, J = 5.4 Hz, J = 8.5 Hz; H-5); 3.90 (dd, 1H, J_{6.7}= 4.2 Hz and $J_{7,7}$ = 8.1 Hz, H-7); 3.88 (dd, 1H, $J_{6,7}$ = 6.5 Hz and $J_{7,7}$ = 8.1 Hz, H-7'); 2.80 (d, 1H, $J_{3,0H}$ = 6.1 Hz, -OH); 1.41 and 1.31 (2s, 6H, CMe₂); 1.36 (s, 6H, CMe₂); 1.24 (t, 3H, J = 7.0 Hz, -CO₂CH₂CH₃). Epimer 4b: $[\alpha]_D^{20}$ +6.6^o (CHCl₃); ¹H-NMR (CDCl₃) δ ppm: 4.67 (dd, 1H, J₃₄ = 6.3 Hz and J_{3,0H}= 2.5 Hz, H-3); 4.20 (q, 2H, J= 7.2 Hz, -OCH₂-); 4.19-4.03 (m, 3H, H-4, H-5, H-6); 3.96 (dd, 1H, $J_{6,7}$ = 4.2 Hz and $J_{7,7}$ = 7.5 Hz, H-7); 3.74 (t, 1H, $J_{6,7}$ = 7.5 Hz and $J_{7,7}$ = 7.5 Hz, H-7'); 3.45 (d, 1H, $J_{3,04}$ = 2.5 Hz, -OH); 1.42, 1.37, 1.35 and 1.33 (4s, 12H, CMe,); 1.25 (t, 3H, J = 7.2 Hz, -CO,CH,CH,). Elemental Analysis: Calcd for C₁₅H₂₄O₂N₂, 52.94% C, 7.05% H, 8.23% N; found: 52.64% C, 7.25% H, 7.63% N,
- 12. ¹H-NMR data of 1 (D₂O) δ ppm: 4.02-3.75 (m, 4H); 3.47 (m, 1H); 2.23 (dd, 1H, J_{1, 1}= 13.1 Hz and J_{1, 4}=5.0 Hz, H-3e); 1.82 (dd, 1H, J_{a_1,a_2} = 13.1Hz and J_{a_1,a_2} = 12.2 Hz, H-3a); ¹³C-NMR (D₂O) δ ppm: 177.4 (C-1); 97.3 (C-2); 74.5, 71.4, 69.7 (C-4, 5, 6); 61.2 (C-7) and 40.0 (C-3). m. p. = 182 °C, $[\alpha]_0^{20}$ +33.3° (c 0.55, H₂O); lit⁹^a m. p. = 185 °C, $[\alpha]_0^{20}$ +33.0° (c 1.0, H₂O).
- 13. Setoi, H.; Takeno, H. and Hashimoto, M.Tetrahedron Lett.; 1985, 26, 4617.
- KDO-NH₄+ purchased from SIGMA-ALDRICH, Ref. K-7000. $14.$
- 15. * Hershberger, C.; Davis, M. and Binkley, S. B. J. Biological Chem.; 1968, 243, 1585; * McNicholas, P. A.; Batley, M. and Redmond, J. W. Carbohydr. Res.; 1987, 165, 17.
- $16.$ Product 10: $[\alpha]_D^{\infty}$ -35.71° (CHCl₃); ¹H-NMR (CDCl₃)</sub> δ ppm: 6.42 (w s, 2H, =NNH₂); 4.40 (ddd, 1H, J_{4,3} = 1.6 Hz, J_{4,3}= 11.0 Hz and $J_{4,5}$ = 4.9 Hz, H-4); 4.25 (q, 2H, J = 7.1 Hz, -OCH₂-); 4.14 (dd, 1H, $J_{8,7}$ = 6.1 Hz and $J_{3,8}$ = 7.8 Hz, H-8); 4.08 (dt, 1H, $J_{7,6}$ = 6.1 Hz, $J_{7,8}$ = 6.1 Hz and $J_{7,8}$ = 7.8 Hz, H-7); 3.97 (dd, 1H, $J_{5,4}$ = 4.9 Hz and $J_{5,6}$ = 8.9 Hz, H-5); 3.94 (dd, 1H, $J_{6,7}$ = 6.1 Hz and $J_{6,5}$ = 8.9 Hz, H-6); 3.87 (t, 1H, J_{g7} and $J_{8,8}$ = 7.8 Hz, H-8'); 2.85 (dd, 1H, $J_{3,4}$ = 11.0 Hz and $J_{3,8}$ = 14.0 Hz, H-3); 2.74 (dd, 1H, $J_{y,4} = 1.6$ Hz and $J_{3,3} = 14.0$ Hz, H-3'); 1.56, 1.43, 1.37 and 1.29 (4s, 12H, CMe₂); 1.34 (t, 3H, J = 7.1 Hz, -CO₂CH₂CH₂); 0.90 (s, 9H, -OSi-C(CH₂)₂); 0.12 (s, 6H, -OSi(CH₂)₂). Exact mass calcd for C₂₂H₂₂O₂N₂Si: 474.2761; found: 474.2824.
- 17. Enders, D.; Eichenauer, H.; Baus, U.; Schubert, H. and Kremer, K. A. M. Tetrahedron; 1984, 40, 1345.
- 18. NMR data were identical with commercially available KDO¹⁴. ¹H-NMR data of 2 (D₂O) δ ppm: 4.50-4.40 (m); 4.20 -3.97 (m); 3,94-3.76 (m); 3.73-3.55 (m); 2.60 (dd, J = 14.2 Hz and J = 6.7 Hz); 2.33 (m); 2.09-1.81 (m); ¹³C-NMR (D₂O) δ ppm: 176.8 (C-1); 96.3 (C-2); 71.2, 69.3, 66.7, 66.3 (C-4, 5, 6,7); 63.1 (C-8) and 33.7 (C-3). m. p. = 121 °C, $[\alpha]_n^{\infty}$ +40.3° (c 0.57, H₂O); lit¹⁵² m. p. = 121-124 ^oC, $[\alpha]_n^{20}$ +40.3^o (c 1.9, H₂O); lit.^{9*i*} m. p. = 120-122 ^oC, $[\alpha]_n^{20}$ +38.7^o (c 1.0, H₂O).

(Received in UK 29 April 1994; revised 14 July 1994; accepted 15 July 1994)